Linker histone H1 modulates nucleosome remodeling by human SWI/SNF.
نویسندگان
چکیده
Chromatin, a combination of nucleosomes and linker histones, inhibits transcription by blocking polymerase movement and access of factors to DNA. ATP-dependent remodeling complexes such as SWI/SNF and RSC alter chromatin structure to increase or decrease this repression. To further our understanding of how human SWI/SNF (hSWI/SNF) "remodels" chromatin we examined the octamer location, nature, and template specificity of hSWI/SNF-remodeled mononucleosomes when free or bound by linker histone H1. We find that, in the absence of H1, hSWI/SNF consistently moves nucleosomes to DNA ends, regardless of template sequence. On some sequences the repositioned histone octamer appears to be moved approximately 45 bp off the DNA edge, whereas on others it appears to be normal, suggesting that the nature of the remodeled nucleosome can be influenced by DNA sequence. By contrast, in the presence of histone H1, hSWI/SNF slides octamers to more central positions and does not promote nucleosome movement off the ends of the DNA. Our results indicate that the nature and position of hSWI/SNF products may be influenced both by DNA sequence and linker histone, and shed light on the roles of H1 and hSWI/SNF in modulating chromatin structure.
منابع مشابه
Histone H1 Subtypes Differentially Modulate Chromatin Condensation without Preventing ATP-Dependent Remodeling by SWI/SNF or NURF
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on...
متن کاملHistone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms
There is a close relationship between histone acetylation and ATP-dependent chromatin remodeling that is not fully understood. We show that acetylation of histone H3 tails affects SWI/SNF (mating type switching/ sucrose non fermenting) and RSC (remodels structure of chromatin) remodeling in several distinct ways. Acetylation of the histone H3 N-terminal tail facilitated recruitment and nucleoso...
متن کاملThe nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5.
Snf/Swi, a nucleosome remodeling complex, is important for overcoming nucleosome-mediated repression of transcription in Saccharomyces cerevisiae. We have addressed the mechanism by which Snf/Swi controls transcription in vivo of an Snf/Swi-dependent promoter, that of the SUC2 gene. By single-cell analysis, our results show that Snf/Swi is required for activated levels of SUC2 expression in eve...
متن کاملActivation domains drive nucleosome eviction by SWI/SNF.
ATP-dependent chromatin remodeling complexes play a critical role in chromatin dynamics. A large number of in vitro studies have pointed towards nucleosome sliding as the principal remodeling outcome of SWI/SNF action, whereas few have described histone octamer transfer as the principal outcome. In contrast, recent in vivo studies have linked the activity of SWI/SNF to histone eviction in trans...
متن کاملCatalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays.
A novel, quantitative nucleosome array assay has been developed that couples the activity of a nucleosome 'remodeling' activity to restriction endonuclease activity. This assay has been used to determine the kinetic parameters of ATP-dependent nucleosome disruption by the yeast SWI/SNF complex. Our results support a catalytic mode of action for SWI/SNF in the absence of nucleosome targeting. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 49 شماره
صفحات -
تاریخ انتشار 2003